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SUMMARY 

A direct method is presented for solving a singular integral equation which is a generalisation of one occurring 
in viscous flow theory and for which other methods of solution have been described by Brown [1] and Boers- 
ma I21. 

1. Introduction 

The singular integral equation 

f (x )  = ~ -  fo p log I x - x ' l f ( x ' ) d x ' + x  - IA (1) 

was encountered by Van de Vooren and Veldman [3] in a problem in viscous flow theory and 

an analytic solution subsequently presented by Brown [1]. An alternative method of  solution 

was later described by Boersma [2]. Brown solved the problem using a Wiener-Hopf method 

which required, in view of  the behaviour o f  log Ix -- x '  I as x'  ~ oo, the introduction of  a conver- 

gence factor exp ( -  e Ix - x '  L ), (e > 0), into equation (1), whilst Boersma's approach was based 

on a function-theoretic method first described by Heins and MacCamy [4]. 

In this paper we describe a direct method of  solving a more general singular integral equation, 

namely, 

f ( x )  = 71-1 f ( x ' )  [)k 1 log Ix - x ' l  + - ~  log (x 2 + x 'z - 2 x x '  cos 2 a)] dx'  

- rr -1 X3xsin (2a) fo ~ (x 2 + x '2 - 2xx '  cos2a)  -1 f ( x ' )  dx '  + u (x), (2) 

where Xl, X2, X3 are known constants, u ( x )  is a known function, 0 < a < 7r, and f ( x  ) is to be 

determined. The singular integrals appearing throughout the paper will be understood as their 

Cauchy Principal Values. 
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Equation (2) reduces to equation (1) in either of  the two special cases: 

1 
( i )  ?`1 = ~, ?`2 = 0 = ?`3, or, (ii) ?`l = ?,2 = ~ , ?`3 = 0, a = 0 (or n), with u (x) = x - 1/2 

Equations of  the general form of  equation (2) arise in the solution of  boundary-value pro- 

blems for Laplace's equation in a wedge-shaped region when a Neumann condition is imposed 

on one face of  the wedge whilst an impedance condition is imposed on the other face. 
A Mellin transform is used, in a manner analogous to that adopted by Lighthill [5 ] to solve 

an integral equation associated with the jet-flap aerofoil, to transform equation (2) into a differ- 

ence equation for the Mellin transform of  an unknown function t~, where f =  d ~/dx. It is 

shown that this difference equation, which appears at first sight to be rather complicated, can 

be transformed into a rather simple inhomogeneous difference equation where the inhomoge- 

neous term itself involves the solution of  another comparatively simple homogeneous difference 

equation which we shall call the 'basic' difference equation of  the problem. This transformed 

inhomogeneous difference equation is such that it can be reduced, for an arbitrary inhomoge- 

neous term, to the solution of  a standard Carleman-type singular integral equation over a semi- 

infinite interval. An integral equation of this kind was encountered by Spence [6] in solving an 

integro-differential equation of  the jet-flap aerofoil problem. Spence solved the equation by 

direct transformation of  results for the Carleman equation over a finite interval and though 
Spence's final result is correct, some of  the intermediate analysis gives rise to divergent integrals. 
We therefore present, in the Appendix, a direct function-theoretic method, avoiding divergent 
integrals, of  solving the singular integral equation of  Carleman type over a semi-infinite range. 

The final form of solution of  the transformed inhomogeneous difference equation is express- 

ed as an integral involving the solution of  the 'basic' difference equation and it is shown that 
this later equation can be transformed into one of a type discussed by Peters [7] (see Stoker [8] 

also) in solving the 'sloping beach' problem, and a solution is obtained using the method describ- 

ed by Peters. 

The solution obtained for general values of  a and ?` is o f  a fairly complicated nature mainly 

due to the rather involved form of  the solution of  the 'basic' difference equation for the general 

problem. However, in many particular cases, the solution takes on a simple form and for the 
1 

function u ( x )  = x -~ in equation (2), the solution of  equation (1) obtained by previous workers 

is recovered when the parameters have the values associated with the two particular cases (i) 

and (ii). 
The forms of  the solution of  the 'basic' difference equation are also explicitly obtained in 

two further particular cases of  equation (2), namely when: (iii) ?`1 = 0, ?`2 = 1, a = n/2, and (iv) 

?`1 = ?`2 = ?`3 =1 (O~ ~(= 0, 7]'), 

2. The method o f  solution 

The general integral equation (2) will be solved by means of  Mellin transforms and conditions 
have to be imposed on f and u as x --> 0 and x ~ oo, in order to ensure that the various Mellin 
transforms used exist in a suitable strip. 
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We shall assume that 

f(x)=O(x-~), as x - - , 0  

=o(x-O+V2)logx) ,  as 

and that 

X --+ c~,  

(3) 

U(x)=O(xI--v3), as  x ~ O  

= o ( x - V 4 1 o g x ) ,  as x ~ c o ,  
(4) 

with the usual meaning of the 'order '  symbols, where 0 < u i < 1, (j" = 1, 2, 3, 4). 
The conditions of  equation (4) can, by introduction of  suitable convergence factors, be re- 

1 1 1 
laxed in particular cases; for example the case u = x -~ can be treated by writing x -5 as lim x 5 / 
(x  + e). o-.o 

If ¢ ( x )  is such that 

d~b _ f f ' (x ) ,  (5)  
f ( x )  = dx  

then we note, from equation (3), that ~ can be chosen so that 

q J ( x ) = O ( x l - V , ) ,  as x ~ 0  

=o(x-U21ogx) ,  as x ~ o o .  
(6) 

The conditions (4) and (6) then ensure that the Mellin transforms ~ ( s )  and U(s), defined by 

fO  ~° 
(~(S), U(S))= (~(x) ,  u ( x ) ) x S - l d x  (7) 

exist and are analytic in the str ip: /1-1 < R e ( s ) <  u, where/1 = Max(u1, v3)and u = Min(u2, v4 ). 

Equation (2) becomes, on using equation (5) and integrating by parts, 

t y ( x ) = u ( x ) _  X, f ?  ~ ( x ' ) d x '  Xz f0,~ t 1 1 } + $ ( x ' )  dx '  
n x' - x 27r x' - xe  i~ x' xe  -i~ 

27ri x' - xe  it3 x' - xe  - i8  

where /3 = 2c~. 
The Mellin inversion formula gives 

1 f c  + i~  
t~(x) = + ~ni a c - i ~  qs ( s )x -Sds '  

(8) 

(9) 

where c is assumed to lie in the strip 0 < Re ( s )  < u < 1, and therefore, assuming that s qt(s ) is 

analytic in the strip e 1 < Re ( s )  < c (this will be verified subsequently), 
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1 fc+ioo 
t~'(x)- - 2~-'c-i~. ( s - l )  ~(s-1)x-Sds.  (10) 

Substituting from equations (9) and (10) into equation (8) and using the results 

r o y  dy/ (y-x)  = lr (Irs)x 
$ cot 

I 3, 

y o y - S d y / ( y - x e  i#) = lr cosec (Trs) exp Ix {i03-7r)}] -~ (11) 

where 0 <13 < 2~r, and 0 < Re ( s )  < 1, shows that equation (8) will be satisfied provided that 

( s )  satisfies the following functional equation: 

[X3 sin 03-zr) s - sin (ns)] (s-  1) q (s-  1 ) 

+ [hi cos Ors) + ~2 cos (/3-n) s] • (s) = U (s) sin Ors), (12) 

for s lying in the strip: 0 < Re (s) < v. 
Equation (12) simplifies, on making the transformation 

q, (s) = r (s) x (s) e (s), (13) 

where P(s) is Euler's Gamma function, to the pair: 

and 

x ( s -  1) Xl cos (Trs) + X2 cos 03-1r) s 
- tan (ns) (14)  

x (s) ~3 sin 0 3 - n )  s - sin (ns)  

U(S) sin (ns) 
G(s) -  tan(ns)G(s-1)= (15) 

r (s) x (s) [x, cos Ors) + X~ cos 03-1r) s] 

Equation (14) is the 'basic' difference equation of the problem. The homogeneous form of 
equation (15) was obtained by Spence and Lighthill in connection with the jet-flap aerofoil 

problem. 
It should be noted that the solution of the 'basic' difference equation (14) is only unique to 

within a multiplying function of period 1. However, in order to ensure that s q~ ( s )  is analytic in 
the strip c - 1 < Re (s )  < c, by an argument similar to that following equation (35) of Spence's 
paper, we deduce that this multiplying function must be a constant. If X is multiplied by a con- 
stant D then, from equation (15), G will be multiplied by 1/D and, since G and X occur in equa- 
tion (13) as a product, the function ~ is independent of D and hence there is no loss of general- 
ity in assuming D to be unity. 

Rewriting the inhomogeneous difference equation (15) as 

G ( s -  1 ) - cot (rrs) G (s) = - P (s) 

and using the convolution theorem for Mellin transforms, viz. 

(16) 
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1 ~c+i~ F(s)H(s) x - sds  = f ?  f ( y ) h ( x / y ) d y / y ,  
27ri ac-i~ 

together with the result 

gives 

1 [,:+i.o cotOrs)x_Sds_ l ( 0 < e < v < l ) ,  
2rri ~c-  ioo 7r (1 - x )  ' 

(17) 

(18) 

1 g ( y ) d y / ( y - x ) = - p ( x ) ,  ( x > 0 )  (19) x -  l g ( x  ) - -~ 

where g ( x )  and p ( x )  are the inverse Mellin transforms of the functions G (s )  and P ( s  ) res- 
pectively, the function P(s ) being given by 

e ( s )  = U(s) cos ( ~ s ) / r ( s )  × (s) {Xl cos Ors) + X2 cos 03-~) s }. (20) 

The general solution of Carleman equations of the type of equation (19) is obtained in the 
Appendix. 

Using equation (13) and the convolution theorem [cf. equation (17)], we finally obtain the 
unknown function qJ(x) in the form: 

I? ~ ( x ) =  g ~ v ) g ( x / y ) d y / y ,  (21) 

where 

1 i . c  + io~ 
k(x) = - -  | r (s )X(s)x-Sds .  (22) 

2zri J c - i ~  

Thus the general solution of equation (2) can be obtained in terms of a solution X (s )  of the 
'basic' difference equation (14) and the general solution of the Carleman-type equation (19). 
Whilst the general solution of equation (19) can be obtained from the results presented in the 
Appendix, it therefore only remains to solve the 'basic' difference equation (15) which simplifies 
to 

w(fe 2~i) - w(f)  = m(f),  

~kl COS (ffS) "t- )t2 COS (~--~") S 

X3 sin (/3-11") s - sin Ors) 
r (s) = - tan (~'s) 

X (s) = exp [v(s)], 

1 
- -  log~' ,  v ( s ) = v ( ~ ' ) ,  £ ( s ) = ~ - ( ~ ' ) ,  

s = 27ri 

= exp [£ (s)], 

lim ~(~'), m(~')=~-(~')-po, w(~')=v(~')-  ~o log~'. 
I~-I~ ~ 2hi 

(23) 

(24) 

where 
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The transformations defined in equation (24) transform the strip 0 < Re ( s )  < v of  the com- 

plex s-plane into the sector - 2vn < arg ~" < 0, of  the ~'-plane, in which the functional equation 
(23) is valid. It should be noted at this stage that in order to have/20 finite we must require that 

2̀ 1 4: 0, 2,3 4: _+ 1 to include the possibility of  a being either zero or ~r. Assuming the validity of  
equation (23) in the whole of  the cut ~'-plane - 2vlr < arg ~" < 2(1 - v)rr, cut along the segment 

argO" = 2(1 - v)n, and that 2̀ 1 and ~-3 satisfy the above requirements, then a solution can be 

written down from results due to Peters, as described in Stoker's book [8]. We have that 

exp[-2u~r i ]  So m[~exp{-2ulri}] d~. (25) 
w(~') = 2rri ~exp {-2urri} - ~" 

The function X ( s )  can now be obtained by the transformations of  equation (24), from equa- 
tion (25). We observe that the form of  w (~') in equation (25) ultimately produces a solution 

X ( s )  of  the 'basic' difference equation (14) which is analytic in the strip u - 1 < Re ( s )  < v of  

the s-plane. This fact, along with equation (13) and the above-mentioned restrictions on 2̀ 1 and 
2`3 verify the assumption on the analyticity of  s • ( s )  in the strip c - 1 < Re ( s )  < c, with 0 < 
c < u, made earlier in the analysis. 

We now consider some special cases of  equation (2) and, in particular, recover the solution 
obtained by previous workers. 

3. The particular cases 

If  we substitute, in the results obtained above, 

1 1 1 
c a s e ( i )  2`1 = 2 ,  2`2 -~ 2`3 ~ O, l) = ~ ,  0 ~ c ~ ~ ,  

1 1 
c a s e ( i i )  2`3 = O ,  2`1 = 2`2 = 4 '  OL = O ,  o r  i f ,  p = i ,  

and take 
1 

u(x)=x~ /(x +e), ( e > O )  (26) 

and allow e-+ 0 after the solution has been obtained, we shall obtain the solution of equation 

(1) as two particular cases of  the general equation (2). 

We find that in both the above cases, we have 

and 

I ,  ( s )  = ' ~, / 2 0 = - 1 o g 2 ,  X(s)=2 s (27) 
. 

k(x) = e -x/2,  p(x) = (2/gx)  ~, (when e -+ O) 

so that from equation (5) and equation (21) we obtain 

f ( x )  = - g g (1 /y)e  -xy/2  dy, 

(28) 

(29) 
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the function g(x), satisfying (19), being given by 

x 3/2 e a (x) 
1 I 1 

g(x) = - ( 2 / n ) 5  x 5 + (2/7r)5 
(1 + x ~ )  -~ 

The relations (29) and (30) finally give the solution of  equation (1) in the form 

~ e ~  e ~ 2 ( y ) - x y / 2  

;(x) x - 5 - ( 2 7 0  - ~  Jo dy,  
y(1 +y2)-~ 

where 

(30) 

(31) 

and 

lfo  - - c o t -  1 (u) du/ (u-y )  a ( v )  = 

(1 +y2)-~ 1 r y  logu 
= - ~ l o g  - J o  du, y 7r 1 +u  2 

1 a ( l / y )  = a ( v )  - ~ fogy.  

(32) 

The solution defined by equation (31) of  equation (1) is exactly that obtained by Brown and 
Boersma. 

In case (iii), i.e. when Xl = 0, X2 = 1, a -- 7r/2, the constant Xl, does not satisfy the require- 
ment necessary for the applicability of  Peters' method of solution of the functional equation 
(14), viz. 

X(s-1)  1 
- -  - - -  ( 3 3 )  

x (s) cos (rrs) 

It is however possible to obtain a solution of  equation (33) directly and setting 

x (s) = {cos Ors)} s ~ (s),  (34) 

shows that ¢ is given by 

irrs 
q~(s)=exp{---~- (s 1)}. (35) 

In case (iv), i.e. when )h = )t2 = a3 = 1, (a :/: 0 or 70, the direct approach described through 
equations (23) to (25) is applicable, and for u = ~, we find, after a little manipulation, that we 

can express ×(s ) as: 

X (s) = cX, (s)/Xo(s) (36) 

where 

Xo(S) = [cos (Trs)]- 5 exp sin (2n0) (37) 
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is the Alexeivski function (see Spence [6]), and 

log( ~P~+I. ) d~ 
1 1 ~" o ~ p - l  

log IX, (s)] : - ~- log ~" + - -  3_ (38) 
21ri ~ ~-  ~" 

with arg (~) = -Tr, ~" = exp [-21ris] and p = 0r-c0/n,  c being an arbitrary constant, which can be 
chosen to be unity, in order to obtain the solution of  (2) by means of the relation (21) [cf. 
equations (19) and (20) also]. 

Appendix 

The general solution of the singular integral equation 

1 r ~ g( t )d t  
c(x)g(x)  - - J 0  - - - ~ ( x )  rr t - x  

will be obtained by a direct function-theoretic approach as in Muskhelishvili [9]. 
We define 

G ( z ) -  2~i g(~)d~/(~-z) ,  z = x  +iy. 

Then, by Plemelj's formulae, (I) reduces to the Hilbert problem 

[c(x)-i]G+ (x) - [c(x) + i ] G -  (x) = £ (x), ( x > 0 )  

in the usual notation. 
Since 

1,  Fc(x)+i] 
~+0,  in general), as x + ~ ,  

we write the solution of  the homogeneous problem (Ili) in the form: 

Go (z) = E (z) z - a exp [~2 (z) ], 

where E(z) is an entire function, and 

~2(z)= fo ~ [~b(~)-o~l/(~-z)d~, 

the function ~b being given by (IV). 
The solution of  the inhomogeneous problem (III) is then obtained in the form 

G ( z ) -  Go(z) fo ~ ~(~)IG~ (~) d~ +KGo(z)lz,  
2rri [c(~) - i] ( ~ - z )  

(I) 

(II) 

(Ill) 

(IV) 

(v) 

(VI) 

(VII) 
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where K is an arbitrary constant. 

Utilizing the Plemelj formulae once again, we obtain the general solution of  (I) in the form: 

c(x)~(x)  ea(X)E(x)  1 o~ e - a ( ~ ) ~ ( ~ ) d ~  

+ " - f o  (~-)" g ( x ) -  cZ(x)+ 1 [c: (x) + 1]-~ 7r x E(~)[c2(~) + 1]-~ (~_x)  

Koea(X)E(x)  
+ 

x ~+ 1 [e z (x) + 1 ] '2 

Ko being an arbitrary constant. 
In the case of  equation (19), we have 

c ( x ) = x  -1, ~(x) 1 1 = - t a n - I x _ l ,  ( 0 < t a n - l x < l r r ) ,  a =  ~, 
ff 

- cot (u) d u / ( u - x ) ,  a ( x ) - - -  . 

(VIII) 

(ix) 

and we note that, for equation (1), we have to choose Ko = 0 and E ( z ) =  a constant, in order 

to satisfy the order conditions (3) and (4), so that with p ( x )  given by equation (28), we finally 

obtain the solution of  equation (19) in the particular case of  equation (1), in the form 

'- , ~ e - a ( ~ ) d ~  1 X 2  x3/2e a(x)  f (2 / . )3  (X) 
g(x)=-(2/Tr)3 x Z + l  7r ( l+x2)~  Jo ( l+~Z) -~ (~  x) 

which simplifies to equation (30), by using the result (see Spence [6]) 

e - a C O  d~ x e - a ( x )  (XI) 
_1 f0 "~ = - 1 +  
7r (1 + ~ 2 ) ~ ( ~ - x )  (1 + x 2 ) ~  

where £2(x ) is given by (IX). (Note that there is a difference of sign in our fZ(x ) as compared 

to that o f  Spence). 
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